Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8005): 839-846, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509363

ABSTRACT

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Stress, Physiological , Animals , Female , Male , Mice , Aging/physiology , Bacterial Infections/pathology , Bacterial Infections/physiopathology , Blood Vessels/cytology , Cell Lineage , Erythropoiesis , Granulocyte Colony-Stimulating Factor/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hemorrhage/pathology , Hemorrhage/physiopathology , Lymphopoiesis , Megakaryocytes/cytology , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Myelopoiesis , Skull/blood supply , Skull/pathology , Skull/physiopathology , Sternum/blood supply , Sternum/cytology , Sternum/metabolism , Stress, Physiological/physiology , Tibia/blood supply , Tibia/cytology , Tibia/metabolism
2.
Science ; 381(6664): 1324-1330, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37733857

ABSTRACT

Pregnancy confers partner-specific protection against complications in future pregnancy that parallel persistence of fetal microchimeric cells (FMcs) in mothers after parturition. We show that preexisting FMcs become displaced by new FMcs during pregnancy and that FMc tonic stimulation is essential for expansion of protective fetal-specific forkhead box P3 (FOXP3)-positive regulatory T cells (Treg cells). Maternal microchimeric cells and accumulation of Treg cells with noninherited maternal antigen (NIMA) specificity are similarly overturned in daughters after pregnancy, highlighting a fixed microchimeric cell niche. Whereas NIMA-specific tolerance is functionally erased by pregnancy, partner-specific resiliency against pregnancy complications persists in mothers despite paternity changes in intervening pregnancy. Persistent fetal tolerance reflects FOXP3 expression plasticity, which allows mothers to more durably remember their babies, whereas daughters forget their mothers with new pregnancy-imprinted immunological memories.


Subject(s)
Chimerism , Fetus , Immune Tolerance , Immunologic Memory , Maternal-Fetal Exchange , Pregnancy , Animals , Female , Mice , Pregnancy/immunology , Antigens/immunology , Cell Plasticity , Fetus/cytology , Fetus/immunology , Forkhead Transcription Factors/immunology , Maternal-Fetal Exchange/immunology , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...